Computational aspects of maximum likelihood estimation of autoregressive fractionally integrated moving average models

نویسندگان

  • Jurgen A. Doornik
  • Marius Ooms
چکیده

We discuss computational aspects of likelihood-based estimation of univariate ARFIMA(p, d, q) models. We show how efficient computation and simulation is feasible, even for large samples. We also discuss the implementation of analytical bias corrections.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals

When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...

متن کامل

QUASI-MAXIMUM LIKELIHOOD ESTIMATION FOR A CLASS OF CONTINUOUS-TIME LONG-MEMORY PROCESSES By Henghsiu Tsai and K. S. Chan Academia Sinica and University of Iowa

Tsai and Chan (2003) has recently introduced the Continuous-time AutoRegressive Fractionally Integrated Moving-Average (CARFIMA) models useful for studying long-memory data. We consider the estimation of the CARFIMA models with discrete-time data by maximizing the Whittle likelihood. We show that the quasimaximum likelihood estimator is asymptotically normal and efficient. Finite-sample propert...

متن کامل

Dierential Geometry of Autoregressive Fractionally Integrated Moving Average Models

The di erential geometry of autoregressive fractionally integrated moving average processes is developed. Properties of Toeplitz forms associated with the spectral density functions of these long memory processes are used to compute the geometric quantities. The role of these geometric quantities on the asymptotic bias of the maximum likelihood estimates of the model parameters and on the Bartl...

متن کامل

Maximum Likelihood Estimation of Stationary Multivariate ARFIMA Processes

This paper considers the maximum likelihood estimation (MLE) of a class of stationary and invertible vector autoregressive fractionally integrated moving-average (VARFIMA) processes considered in (26) of Luceño [1] or Model A of Lobato [2] where each component yi,t is a fractionally integrated process of order di, i = 1, . . . , r. Under the conditions outlined in Assumption 1 of this paper, th...

متن کامل

Maximum Likelihood Estimators for ARMA and ARFIMA Models: A Monte Carlo Study

Abstract We analyze by simulation the properties of two time domain and two frequency domain estimators for low order autoregressive fractionally integrated moving average Gaussian models, ARFIMA (p; d; q). The estimators considered are the exact maximum likelihood for demeaned data, EML, the associated modi ed pro le likelihood, MPL, and the Whittle estimator with, WLT, and without tapered dat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2003